Η τυπική απόκλιση είναι μια μαθηματική μέτρηση της μέσης διακύμανσης και χαρακτηρίζεται κυρίως από στατιστικές, οικονομικά, λογιστικά και οικονομικά. Για ένα δεδομένο σύνολο δεδομένων, η τυπική απόκλιση μετρά τον τρόπο με τον οποίο τα αριθμητικά στοιχεία είναι από μια μέση τιμή. Η τυπική απόκλιση μπορεί να υπολογιστεί λαμβάνοντας την τετραγωνική ρίζα της διακύμανσης, η οποία είναι η μέση τιμή των τετραγωνικών διαφορών του μέσου όρου.
Όταν πρόκειται για επενδύσεις αμοιβαίων κεφαλαίων ή αμοιβαίων κεφαλαίων αντιστάθμισης κινδύνου, οι αναλυτές θεωρούν την τυπική απόκλιση περισσότερο από οποιαδήποτε άλλη μέτρηση κινδύνου. Λαμβάνοντας την τυπική απόκλιση του ετήσιου ποσοστού απόδοσης ενός χαρτοφυλακίου, μπορείτε να μετρήσετε καλύτερα τη συνέπεια με την οποία παράγονται οι αποδόσεις. Οι μεγαλύτερες τυπικές αποκλίσεις υποδεικνύουν μεγαλύτερο βαθμό κινδύνου.
Ένας από τους λόγους για την ευρεία δημοτικότητα των μετρήσεων τυπικής απόκλισης είναι η συνοχή τους. Όχι μόνο "μια τυπική απόκλιση από τον μέσο όρο" αντιπροσωπεύει το ίδιο πράγμα είτε μιλάτε για το ΑΕΠ, τις καλλιέργειες είτε το ύψος των σκύλων, αλλά πάντα υπολογίζεται στις ίδιες μονάδες με το σύνολο δεδομένων. Ποτέ δεν χρειάζεται να ερμηνεύσετε μια επιπλέον μονάδα μέτρησης που προκύπτει από τον τύπο.
Για παράδειγμα, ας υποθέσουμε ότι ένα αμοιβαίο κεφάλαιο επιτυγχάνει τα ακόλουθα ετήσια ποσοστά απόδοσης κατά τη διάρκεια των πέντε ετών: 4%, 6%, 8,5%, 2% και 4%. Η μέση τιμή ή ο μέσος όρος είναι 4,9%. Η τυπική απόκλιση είναι 2. 46%, που σημαίνει ότι κάθε μεμονωμένη ετήσια τιμή είναι κατά μέσο όρο 2. 46% μακριά από το μέσο όρο. Κάθε αξία εκφράζεται σε ένα ποσοστό και τώρα η σχετική μεταβλητότητα είναι ευκολότερη να συγκριθεί μεταξύ παρόμοιων αμοιβαίων κεφαλαίων.
Παρόλο που είναι σημαντικό, οι τυπικές αποκλίσεις δεν θα πρέπει να ληφθούν ως μια τελική μέτρηση της αξίας μιας μεμονωμένης επένδυσης ή ενός χαρτοφυλακίου. Για παράδειγμα, ένα αμοιβαίο κεφάλαιο που επιστρέφει μεταξύ 5% και 7% κάθε έτος έχει χαμηλότερη τυπική απόκλιση από ένα ανταγωνιστικό ταμείο που επιστρέφει μεταξύ 6% και 16% κάθε χρόνο, αλλά είναι σαφώς κατώτερη επιλογή με όλα τα υπόλοιπα πράγματα να είναι ίσα.
Μια άλλη δυνητική αδυναμία της βασιζόμενης στην τυπική απόκλιση για τη μέτρηση του κινδύνου για ένα χαρτοφυλάκιο είναι ότι η τυπική απόκλιση προϋποθέτει μια κατανομή των τιμών δεδομένων σε μορφή καμπάνας. Αυτό σημαίνει ότι η εξίσωση δείχνει ότι υπάρχει η ίδια πιθανότητα για την επίτευξη τιμών πάνω από το μέσο όρο ή κάτω από το μέσο όρο. Πολλά χαρτοφυλάκια δεν εμφανίζουν αυτή την τάση και τα αμοιβαία κεφάλαια αντιστάθμισης κινδύνου τείνουν να είναι επικαλυμμένα προς μία ή την άλλη κατεύθυνση.
Όσο περισσότεροι τίτλοι κατέχονται σε ένα χαρτοφυλάκιο και οι πιο διαφορετικοί τύποι τίτλων, τόσο πιο πιθανή είναι η τυπική απόκλιση. Επίσης, όπως και σε οποιοδήποτε στατιστικό μοντέλο, τα μεγάλα σύνολα δεδομένων είναι πιο αξιόπιστα από τα μικρά σύνολα δεδομένων. Η μέση τιμή 4.9% και 2.46% τυπική απόκλιση στο παραπάνω παράδειγμα δεν είναι τόσο αξιόπιστη όσο οι ίδιες τιμές που παράγονται από 50 διαφορετικούς υπολογισμούς αντί για πέντε.
Ποια είναι η τυπική απόκλιση που χρησιμοποιείται στα αμοιβαία κεφάλαια;
Δείτε πώς η τυπική απόκλιση είναι χρήσιμη για την αξιολόγηση της απόδοσης ενός αμοιβαίου κεφαλαίου. Χρησιμοποιήστε το σε συνδυασμό με άλλες μετρήσεις για να βρείτε μια καλή επένδυση.
Πώς χρησιμοποιείται η τυπική απόκλιση για τον προσδιορισμό της μεταβλητότητας;
Κατανοούν πώς οι συνήθεις αποκλίσεις και οι ζώνες Bollinger χρησιμοποιούνται για τη μέτρηση της μεταβλητότητας της αγοράς και πώς αυτό είναι χρήσιμο για την καθιέρωση εμπορικής στρατηγικής.
Πώς χρησιμοποιείται η τυπική απόκλιση για τον προσδιορισμό του κινδύνου;
Κατανοούν τα βασικά στοιχεία του υπολογισμού και της ερμηνείας της τυπικής απόκλισης και του τρόπου με τον οποίο χρησιμοποιείται για τη μέτρηση του κινδύνου στον κλάδο των επενδύσεων.